Anomaly Detection and Mitigation for Disaster Area Networks
نویسندگان
چکیده
One of the most challenging applications of wireless networking are in disaster area networks where lack of infrastructure, limited energy resources, need for common operational picture and thereby reliable dissemination are prevalent. In this paper we address anomaly detection in intermittently connected mobile ad hoc networks in which there is little or no knowledge about the actors on the scene, and opportunistic contacts together with a store-and-forward mechanism are used to overcome temporary partitions. The approach uses a statistical method for detecting anomalies when running a manycast protocol for dissemination of important messages to k receivers. Simulation of the random walk gossip (RWG) protocol combined with detection and mitigation mechanisms is used to illustrate that resilience can be built into a network in a fully distributed and attack-agnostic manner, at a modest cost in terms of drop in delivery ratio and additional transmissions. The approach is evaluated with attacks by adversaries that behave in a similar manner to fair nodes when invoking protocol actions.
منابع مشابه
Dynamic anomaly detection by using incremental approximate PCA in AODV-based MANETs
Mobile Ad-hoc Networks (MANETs) by contrast of other networks have more vulnerability because of having nature properties such as dynamic topology and no infrastructure. Therefore, a considerable challenge for these networks, is a method expansion that to be able to specify anomalies with high accuracy at network dynamic topology alternation. In this paper, two methods proposed for dynamic anom...
متن کاملA Survey of Anomaly Detection Approaches in Internet of Things
Internet of Things is an ever-growing network of heterogeneous and constraint nodes which are connected to each other and the Internet. Security plays an important role in such networks. Experience has proved that encryption and authentication are not enough for the security of networks and an Intrusion Detection System is required to detect and to prevent attacks from malicious nodes. In this ...
متن کاملDetection of Mo geochemical anomaly in depth using a new scenario based on spectrum–area fractal analysis
Detection of deep and hidden mineralization using the surface geochemical data is a challenging subject in the mineral exploration. In this work, a novel scenario based on the spectrum–area fractal analysis (SAFA) and the principal component analysis (PCA) has been applied to distinguish and delineate the blind and deep Mo anomaly in the Dalli Cu–Au porphyry mineralization area. The Dalli miner...
متن کاملA Novel Ensemble Approach for Anomaly Detection in Wireless Sensor Networks Using Time-overlapped Sliding Windows
One of the most important issues concerning the sensor data in the Wireless Sensor Networks (WSNs) is the unexpected data which are acquired from the sensors. Today, there are numerous approaches for detecting anomalies in the WSNs, most of which are based on machine learning methods. In this research, we present a heuristic method based on the concept of “ensemble of classifiers” of data minin...
متن کاملADAPTIVE ORDERED WEIGHTED AVERAGING FOR ANOMALY DETECTION IN CLUSTER-BASED MOBILE AD HOC NETWORKS
In this paper, an anomaly detection method in cluster-based mobile ad hoc networks with ad hoc on demand distance vector (AODV) routing protocol is proposed. In the method, the required features for describing the normal behavior of AODV are defined via step by step analysis of AODV and independent of any attack. In order to learn the normal behavior of AODV, a fuzzy averaging method is used fo...
متن کامل